An investigation of the causal relationship between sunspot groups and coronal mass ejections by determining source active regions*
(By Abd-ur Raheem, Huseyin Cavus, Gani Caglar Coban, Ahmet Cumhur Kinaci, Haimin Wang and Jason T. L. Wang)
Abstract
Although the source active regions of some coronal mass ejections (CMEs) were identified in CME catalogues, vast majority of CMEs do not have an identified source active region. We propose a method that uses a filtration process and machine learning to identify the sunspot groups associated with a large fraction of CMEs and compare the physical parameters of these identified sunspot groups with properties of their corresponding CMEs to find mechanisms behind the initiation of CMEs. These CMEs were taken from the Coordinated Data Analysis workshops (CDAW) database hosted at NASA’s website. The Helio-seismic and Magnetic Imager (HMI) Active Region Patches (HARPs) were taken from the Stanford University’s JSOC database. The source active regions of the CMEs were identified by the help of a custom filtration procedure and then by training a Long Short-Term Memory Network (LSTM) to identify the patterns in the physical magnetic parameters derived from vector and line of sight magnetograms. The neural network simultaneously considers the time series data of these magnetic parameters at once and learns the patterns at the onset of CMEs. This neural network was then used to identify the source HARPs for the CMEs recorded from 2011 till 2020. The neural network was able to reliably identify source HARPs for 4895 CMEs out of 14604 listed in the CDAW database during the afore-mentioned period.
Cite as: Abd-ur Raheem, Huseyin Cavus, Gani Caglar Coban, Ahmet Cumhur Kinaci, Haimin Wang, Jason T L Wang, An investigation of the causal relationship between sunspot groups and coronal mass ejections by determining source active regions, Monthly Notices of the Royal Astronomical Society, Volume 506, Issue 2, September 2021, Pages 1916–1926, https://doi.org/10.1093/mnras/stab1816
Data Statement: Data are available in a repository and can be accessed via
https://doi.org/10.6084/m9.figshare.14512860.v4
*This study was performed with a grant under the TUBITAK 117F336 project.